A Novel Yttrium(III) Complex for Estimating Dopamine in Pure and Pharmaceutical Dosage Forms
DOI:
https://doi.org/10.48112/bcs.v2i1.323Abstract

A simple, rapid, sensitive, accurate, precise, and cost-effective spectrophotometric method has been developed to estimate dopamine in pure and pharmaceutical dosage forms based on the redox reaction of dopamine in an acid medium with Yttrium(III) ion as an oxidizing agent. The latter suffers reduction to Yttrium(II) ion and reacted with 1,10-phenanthroline to form a colored product peaking at 510 nm. Beer's law is obeyed in the concentration range of 0.5-10 μg mL−1 with a molar absorptivity of 1.16x104 L mole−1 cm−1, Sandall's sensitivity of 0.0131 μg.cm-2, the recovery rate of dopamine in pharmaceutical dosage was in the range of 98.97 to 101.57%. The effects of variables such as oxidizing agent, reagent concentration, time of oxidation reaction, surfactant, formation constant of the complex, have been investigated to optimize the procedure. The results have been validated analytically and statistically. The proposed method has been successfully applied to estimate dopamine in pharmaceutical dosage forms.
Keywords:
Dopamine, Dosage forms, Redox reaction, Spectrophotometric method, Yttrium(III)Metrics
References
Abdel-Rahman, L. H., Adam, M. S. S., Abu-Dief, A. M., Moustafa, H., Basha, M. T., Aboraia, A. S., Al-Farhan, B. S., & Ahmed, H. E. S. (2018). Synthesis, theoretical investigations, biocidal screening, DNA binding, in vitro cytotoxicity and molecular docking of novel Cu (II), Pd (II) and Ag (I) complexes of chlorobenzylidene Schiff base: Promising antibiotic and anticancer agents. Applied Organometallic Chemistry, 32(12), 1–21. https://doi.org/10.1002/aoc.4527
Al-Hasnawi, S. W., & Nasr, M. S. (2020). Spectrophotometric determination of Sulfasalazine drug in pure and Pharmaceutical preparation using sodium 1, 2-naphthoquinone-4-sulfonate (NQS) reagent. Research Journal of Pharmacy and Technology, 13(10), 4625–4628. https://doi.org/10.5958/0974-360X.2020.00814.8
Al-Salahi, N. O. A., Hashem, E. Y., & Abdel-Kader, D. A. (2022). Spectrophotometric Methods for Determination of Dopamine Hydrochloride in Bulk and in Injectable Forms. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 278, 121278. https://doi.org/10.1016/j.saa.2022.121278
Bas, S. Z., Cummins, C., Selkirk, A., Borah, D., Ozmen, M., & Morris, M. A. (2019). A novel electrochemical sensor based on metal ion infiltrated block copolymer thin films for sensitive and selective determination of dopamine. ACS Applied Nano Materials, 2(11), 7311–7318. https://doi.org/10.1021/acsanm.9b01794
Boumya, W., Achak, M., Bakasse, M., & El Mhammedi, M. A. (2020). Indirect determination of dopamine and paracetamol by electrochemical impedance spectroscopy using azo coupling reaction with oxidized 2, 4-dinitrophenylhydrazine (DNPH): Application in commercial tablets. Journal of Science: Advanced Materials and Devices, 5(2), 218–223. https://doi.org/10.1016/j.jsamd.2020.04.003
Christian, G. D., Dasgupta, P. K., & Schug, K. A. (2013). Analytical chemistry. John Wiley & Sons.
Ermiş, N., & Tinkiliç, N. (2021). Development of an Electrochemical Sensor for Selective Determination of Dopamine Based on Molecularly Imprinted Poly (p‐aminothiophenol) Polymeric Film. Electroanalysis, 33(6), 1491–1501. https://doi.org/10.1002/elan.202060556
Guan, Q., Mei, Y., Etschmann, B., Testemale, D., Louvel, M., & Brugger, J. (2020). Yttrium complexation and hydration in chloride-rich hydrothermal fluids: a combined ab initio molecular dynamics and in situ X-ray absorption spectroscopy study. Geochimica et Cosmochimica Acta, 281, 168–189. https://doi.org/10.1016/j.gca.2020.04.015
Guo, L., Zhang, Y., & Li, Q. (2009). Spectrophotometric determination of dopamine hydrochloride in pharmaceutical, banana, urine and serum samples by potassium ferricyanide-Fe (III). Analytical Sciences, 25(12), 1451–1455. https://doi.org/10.2116/analsci.25.1451
Latif, S., Jahangeer, M., Razia, D. M., Ashiq, M., Ghaffar, A., Akram, M., El Allam, A., Bouyahya, A., Garipova, L., & Shariati, M. A. (2021). Dopamine in Parkinson’s disease. Clinica Chimica Acta, 522, 114–126. https://doi.org/10.1016/j.cca.2021.08.009
Liu, X., Zhang, W., Huang, L., Hu, N., Liu, W., Liu, Y., Li, S., Yang, C., Suo, Y., & Wang, J. (2018). Fluorometric determination of dopamine by using molybdenum disulfide quantum dots. Microchimica Acta, 185(4), 1–8. https://doi.org/10.1007/s00604-018-2771-0
Moghadam, M. R., Dadfarnia, S., Shabani, A. M. H., & Shahbazikhah, P. (2011). Chemometric-assisted kinetic–spectrophotometric method for simultaneous determination of ascorbic acid, uric acid, and dopamine. Analytical Biochemistry, 410(2), 289–295. https://doi.org/10.1016/j.ab.2010.11.007
Mohamed, G., Nour-El-Dien, F., & El-Nahas, R. (2009). Spectrophotometric and standard addition methods for quantitative determination of dopamine hydrochloride and levodopa in tablets and ampoules. Afinidad, 66(541). https://raco.cat/index.php/afinidad/article/view/277273
Mostafa, M. M., Abd El-Wahab, Z. H., Salman, A. A., & Abdelbaset, W. M. (2021). The use of complex formation manner for spectrophotometric analysis of gatifloxacin drug based on Co (II), Ni (II) and La (III) ions. Heliyon, 7(1), e06051. https://doi.org/10.1016/j.heliyon.2021.e06051
Nejres, A. M., & Moath A. Najem. (2023). Spectrophotometric Determination of Mesalazine in pure and Pharmaceutical Preparations by Chelation method. AIP Conference Proceedings, 1–8, in press.
Nejres, A. M., & Najem, M. A. (2022). Use of Mesalazine for the Determination of Dopamine and Its Pharmaceutical Preparations by Spectrophotometric Method. The Israa University Journal of Applied Sciences, 6(1), 228–245. https://doi.org/10.52865/AVWR7365
Nejres, A. M., Ali, H. K., Behnam, S. P., & Mustafa, Y. F. (2020). Potential effect of ammonium chloride on the optical physical properties of polyvinyl alcohol. Systematic Reviews in Pharmacy, 11(6), 726–732. https://doi.org/10.31838/srp.2020.6.107
Nghia, N. N., & Lee, Y.-I. (2020). Highly sensitive and selective optosensing of quercetin based on novel complexation with yttrium ions. Analyst, 145(9), 3376–3384. https://doi.org/10.1039/D0AN00117A
Prichard, J. E. (1884). The British pharmacopoeia. British Medical Journal, 2(1238), 586. https://doi.org/10.1136/bmj.2.1238.586-c
Saleem, B. A. A. (2019). Spectrophotometric determination of some drugs using oxidation reduction reactions. Ibn AL-Haitham Journal For Pure and Applied Sciences, 32(3), 43–55. https://doi.org/10.30526/32.3.2281
Shaikh, S. M. T., Manjunatha, D. H., Harikrishna, K., Ramesh, K. C., Kumar, R. S., & Seetharamappa, J. (2008). Diazocoupling reaction for the spectrophotometric determination of physiologically active catecholamines in bulk and pharmaceutical preparations. Journal of Analytical Chemistry, 63(7), 637–642. https://doi.org/10.1134/S106193480807006X
Stefanski, J., & Jahn, S. (2020). Yttrium speciation in subduction-zone fluids from ab initio molecular dynamics simulations. Solid Earth, 11(3), 767–789. https://doi.org/10.5194/se-11-767-2020
Wang, H. Y., Sun, Y., & Tang, B. (2002). Study on fluorescence property of dopamine and determination of dopamine by fluorimetry. Talanta, 57(5), 899–907. https://doi.org/10.1016/S0039-9140(02)00123-6
Zhuang, Y., Krumm, B., Zhang, H., Zhou, X. E., Wang, Y., Huang, X.-P., Liu, Y., Cheng, X., Jiang, Y., & Jiang, H. (2021). Mechanism of dopamine binding and allosteric modulation of the human D1 dopamine receptor. Cell Research, 31(5), 593–596. https://doi.org/10.1038/s41422-021-00482-0

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Biomedicine and Chemical Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.