A Review of General Properties of Blue-Green Algae (Cyanobacteria)

Authors

  • Yazi Abdullah Jassim Department of Biology, College of Science, Babylon University, Babylon – Iraq
  • Eman Fadhel Abbas Awadh Department of Biology, College of Science, Babylon University, Babylon – Iraq
  • Shaemaa Muhi Hasoon Al-Amery Department of Biology, College of Science, Babylon University, Babylon – Iraq

DOI:

https://doi.org/10.48112/bcs.v2i2.397

Abstract

Abstract Views: 696

Cyanobacteria are a photosynthetic Gram-negative bacteria that found in all habitat and usually in water. About two-thirds of the species studied are able to fix nitrogen, and thus participate in the nitrogen cycle. Cyanobacteria contain three pigments, green, blue and red. The green pigment is chlorophyll and helps it in photosynthesis. The blue dye is what gives it the blue colour, and the reason for that is due to the abundance of blue dye inside it. As for the red pigment, it is beta-carotene, so we infer its presence from the flamingo bird. When the flamingo drinks water, cyanobacteria enter its body, and the pink colour appears on some parts of its body. Cyanobacteria are currently considered a group of germs, so they are also called cyanobacteria. It has been completely shown that they are not closely related to plants, as they are not related to plants in any way (contrary to what was expected), nor to fungi or animals. Cyanobacteria are a variety of Gram-positive bacteria present in a range of different environmental locations such as soil, vegetables, sewage, skin and skin blotches. Some such as Corynebacterium diphtheriae are pathogens while others such as Corynebacterium glutamicum are of enormous industrial importance. C. glutamicum is a biotechnologically important bacterium with an annual production of more than two tons of the amino acids Polycomb group and lysine.

Keywords:

Cyanobacteria, fix nitrogen, photosynthesis, anoxic, Oxyphotobacteria

Metrics

Metrics Loading ...

References

Nürnberg, D. J., Mariscal, V., Parker, J., Mastroianni, G., Flores, E., & Mullineaux, C. W. (2014). Branching and intercellular communication in the S ection V cyanobacterium M astigocladus laminosus, a complex multicellular prokaryote. Molecular Microbiology, 91(5), 935-949. https://doi.org/10.1111/mmi.12506

Allaby, M. (1992). The Concise Oxford dictionary of botany: Oxford University Press; 442 p jurisdicción de los municipios de Peque y Sabanalarga. Occidente Antioqueño–Arango-Arroyave.

Baumgartner, R. J., Van Kranendonk, M. J., Wacey, D., Fiorentini, M. L., Saunders, M., Caruso, S., ... & Guagliardo, P. (2019). Nano− porous pyrite and organic matter in 3.5-billion-year-old stromatolites record primordial life. Geology, 47(11), 1039-1043. https://doi.org/10.1130/G46365.1

Bocchi, S., & Malgioglio, A. (2010). Azolla-Anabaena as a biofertilizer for rice paddy fields in the Po Valley, a temperate rice area in Northern Italy. International Journal of Agronomy, 2010. https://doi.org/10.1155/2010/152158

Claessen, D., Rozen, D. E., Kuipers, O. P., Søgaard-Andersen, L., & Van Wezel, G. P. (2014). Bacterial solutions to multicellularity: a tale of biofilms, filaments and fruiting bodies. Nature Reviews Microbiology, 12(2), 115-124. https://doi.org/10.1038/nrmicro3178

Ehlers, K., & Oster, G. (2012). On the mysterious propulsion of Synechococcus. PLoS One, 7(5), e36081. https://doi.org/10.1371/journal.pone.0036081

Esteves-Ferreira, A. A., Cavalcanti, J. H. F., Vaz, M. G. M. V., Alvarenga, L. V., Nunes-Nesi, A., & Araújo, W. L. (2017). Cyanobacterial nitrogenases: phylogenetic diversity, regulation and functional predictions. Genetics and Molecular Biology, 40, 261-275. https://doi.org/10.1590/1678-4685-GMB-2016-0050

Garcia-Pichel, F. (2000). Cyanobacteria. Encylopedia of Microbiology. https://doi.org/10.1016/B978-012373944-5.00250-9

Hoiczyk, E., & Baumeister, W. (1998). The junctional pore complex, a prokaryotic secretion organelle, is the molecular motor underlying gliding motility in cyanobacteria. Current Biology, 8(21), 1161-1168. https://doi.org/10.1016/S0960-9822(07)00487-3

Kehoe, D. M., & Gutu, A. (2006). Responding to color: the regulation of complementary chromatic adaptation. Annu. Rev. Plant Biol., 57, 127-150. https://doi.org/10.1146/annurev.arplant.57.032905.105215

Kerfeld, C. A., Heinhorst, S., & Cannon, G. C. (2010). Bacterial microcompartments. Annual review of microbiology, 64, 391-408. https://doi.org/10.1146/annurev.micro.112408.134211

Khayatan, B., Bains, D. K., Cheng, M. H., Cho, Y. W., Huynh, J., Kim, R., ... & Risser, D. D. (2017). A putative O-linked β-N-acetylglucosamine transferase is essential for hormogonium development and motility in the filamentous cyanobacterium Nostoc punctiforme. Journal of Bacteriology, 199(9), e00075-17. https://doi.org/10.1128/JB.00075-17

Klatt, J. M., De Beer, D., Häusler, S., & Polerecky, L. (2016). Cyanobacteria in sulfidic spring microbial mats can perform oxygenic and anoxygenic photosynthesis simultaneously during an entire diurnal period. Frontiers in microbiology, 7, 1973. https://doi.org/10.3389/fmicb.2016.01973

Liberton, M. L., & Pakrasi, H. B. (2008). Membrane systems in cyanobacteria (No. PNNL-SA-55252). Pacific Northwest National Lab.(PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab.(EMSL).

McBride, M. J. (2001). Bacterial gliding motility: multiple mechanisms for cell movement over surfaces. Annual Reviews in Microbiology, 55(1), 49-75. https://doi.org/10.1146/annurev.micro.55.1.49

Meeks, J. C., Elhai, J., Thiel, T., Potts, M., Larimer, F., Lamerdin, J., ... & Atlas, R. (2001). An overview of the genome of Nostoc punctiforme, a multicellular, symbiotic cyanobacterium. Photosynthesis research, 70, 85-106. https://doi.org/10.1023/A:1013840025518

Pathak, J., Maurya, P. K., Singh, S. P., Häder, D. P., & Sinha, R. P. (2018). Cyanobacterial farming for environment friendly sustainable agriculture practices: innovations and perspectives. Frontiers in Environmental Science, 6, 7. https://doi.org/10.3389/fenvs.2018.00007

Rae, B. D., Long, B. M., Badger, M. R., & Price, G. D. (2013). Functions, compositions, and evolution of the two types of carboxysomes: polyhedral microcompartments that facilitate CO2 fixation in cyanobacteria and some proteobacteria. Microbiology and molecular biology reviews, 77(3), 357-379. https://doi.org/10.1128/MMBR.00061-12

Sinha, R. P., & Häder, D. P. (2008). UV-protectants in cyanobacteria. Plant Science, 174(3), 278-289. https://doi.org/10.1016/j.plantsci.2007.12.004

Stal, L. J. (2016). Coastal sediments: transition from land to sea. The Marine Microbiome: An Untapped Source of Biodiversity and Biotechnological Potential, 283-304.

Vermaas, W. F. (2001). Photosynthesis and respiration in cyanobacteria. e LS. https://doi.org/10.1038/npg.els.0001670

Waterbury, J. B., Willey, J. M., Franks, D. G., Valois, F. W., & Watson, S. W. (1985). A cyanobacterium capable of swimming motility. Science, 230(4721), 74-76. https://doi.org/10.1126/science.230.4721.74

Wilde, A., & Mullineaux, C. W. (2015). Motility in cyanobacteria: polysaccharide tracks and T ype IV pilus motors. Molecular Microbiology, 98(6), 998-1001. https://doi.org/10.1111/mmi.13242

Singh, V. (2014). Text book of botany diversity of microbes & cryptogams. Rastogi Publications.

Sobiechowska-Sasim, M., Stoń-Egiert, J., & Kosakowska, A. (2014). Quantitative analysis of extracted phycobilin pigments in cyanobacteria—an assessment of spectrophotometric and spectrofluorometric methods. Journal of Applied Phycology, 26, 2065-2074. https://doi.org/10.1007/s10811-014-0244-3

Palenik, B., & Haselkorn, R. (1992). Multiple evolutionary origins of prochlorophytes, the chlorophyll b-containing prokaryotes. Nature, 355(6357), 265-267. https://doi.org/10.1038/355265a0

Fay, P. (1992). Oxygen relations of nitrogen fixation in cyanobacteria. Microbiological reviews, 56(2), 340-373. https://doi.org/10.1128/mr.56.2.340-373.1992

Grossman, A. R., Schaefer, M. R., Chiang, G. G., & Collier, J. (1993). The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiological reviews, 57(3), 725-749. https://doi.org/10.1128/mr.57.3.725-749.1993

Walsby, A. (1994). Gas vesicles. Microbiological reviews, 58(1), 94-144. https://doi.org/10.1128/mr.58.1.94-144.1994

Golden, J. W., & Yoon, H. S. (1998). Heterocyst formation in Anabaena. Current opinion in microbiology, 1(6), 623-629. https://doi.org/10.1016/S1369-5274(98)80106-9

Vothknecht, U. C., & Westhoff, P. (2001). Biogenesis and origin of thylakoid membranes. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1541(1-2), 91-101. https://doi.org/10.1016/S0167-4889(01)00153-7

Corsetti, F. A., Awramik, S. M., & Pierce, D. (2003). A complex microbiota from snowball Earth times: microfossils from the Neoproterozoic Kingston Peak Formation, Death Valley, USA. Proceedings of the National Academy of Sciences, 100(8), 4399-4404. https://doi.org/10.1073/pnas.0730560100

Long, B. M., Badger, M. R., Whitney, S. M., & Price, G. D. (2007). Analysis of carboxysomes from Synechococcus PCC7942 reveals multiple Rubisco complexes with carboxysomal proteins CcmM and CcaA. Journal of Biological Chemistry, 282(40), 29323-29335. https://doi.org/10.1074/jbc.M703896200

Kehoe, D. M. (2010). Chromatic adaptation and the evolution of light color sensing in cyanobacteria. Proceedings of the National Academy of Sciences, 107(20), 9029-9030. https://doi.org/10.1073/pnas.1004510107

Risser, D. D., Chew, W. G., & Meeks, J. C. (2014). Genetic characterization of the hmp locus, a chemotaxis‐like gene cluster that regulates hormogonium development and motility in N ostoc punctiforme. Molecular microbiology, 92(2), 222-233. https://doi.org/10.1111/mmi.12552

Monchamp, M. E., Spaak, P., & Pomati, F. (2019). Long-term diversity and distribution of non-photosynthetic cyanobacteria in peri-alpine lakes. Frontiers in microbiology, 3344. https://doi.org/10.3389/fmicb.2018.03344

A Review of General Properties of Blue-Green Algae (Cyanobacteria)

Published

2023-04-01

How to Cite

Jassim, Y. A., Awadh, E. F. A., & Al-Amery, S. M. H. (2023). A Review of General Properties of Blue-Green Algae (Cyanobacteria). Biomedicine and Chemical Sciences, 2(2), 143–148. https://doi.org/10.48112/bcs.v2i2.397

Issue

Section

Articles