A Review on Antibiotic Resistance in Microorganisms


  • Yazi Abdullah Jassim Babylon University, College of Sciences, Biology Department - Iraq




Abstract Views: 271

Antibiotic resistance occurs when microorganisms develop mechanisms that protect them from the effects of antibiotics. Resistant microorganisms are more difficult to treat, require higher doses or alternative therapies may be more toxic, as well as more expensive. Microorganisms that are able to resist many antibiotics are called multi-resistant. All kinds of microorganisms can develop this ability to resist; Fungi develop resistance against antifungals, viruses develop resistance against antivirals, protozoa develop resistance against protozoa, and bacteria develop resistance against antibiotics. Resistance arose naturally either through genetic mutations or through the transmission of resistance from one sex that has acquired it to another that has not yet acquired it, in particular. Accordingly, it is urgent to reduce the misuse of antibiotics by not using them only when they are really needed.


Copolyester, Curcumin Analogues, Fluorescence, Polycondensation


Metrics Loading ...


Albrich, W. C., Monnet, D. L., & Harbarth, S. (2004). Antibiotic selection pressure and resistance in Streptococcus pneumoniae and Streptococcus pyogenes. Emerging Infectious diseases, 10(3), 514. https://doi.org/10.3201%2Feid1003.030252

Alter, N. M. (2015). Two or Three Things I Know about Harun Farocki. October, 151, 151-158. https://doi.org/10.1162/OCTO_a_00206

Ayukekbong, J. A., Ntemgwa, M., & Atabe, A. N. (2017). The threat of antimicrobial resistance in developing countries: causes and control strategies. Antimicrobial Resistance & Infection Control, 6(1), 1-8. https://doi.org/10.1186/s13756-017-0208-x

Boyle-Vavra, S., & Daum, R. S. (2007). Community-acquired methicillin-resistant Staphylococcus aureus: the role of Panton–Valentine leukocidin. Laboratory Investigation, 87(1), 3-9. https://doi.org/10.1038/labinvest.3700501

Chan, C. X., Beiko, R. G., & Ragan, M. A. (2011). Lateral transfer of genes and gene fragments in Staphylococcus extends beyond mobile elements. Journal of Bacteriology, 193(15), 3964-3977. https://doi.org/10.1128/JB.01524-10

Chisti, M. J., Harris, J. B., Carroll, R. W., Shahunja, K. M., Shahid, A. S., Moschovis, P. P., ... & Ahmed, T. (2021, July). Antibiotic-resistant bacteremia in young children hospitalized with pneumonia in Bangladesh is associated with a high mortality rate. In Open Forum Infectious Diseases (Vol. 8, No. 7, p. ofab260). US: Oxford University Press. https://doi.org/10.1093/ofid/ofab260

Cirz, R. T., Chin, J. K., Andes, D. R., de Crécy-Lagard, V., Craig, W. A., & Romesberg, F. E. (2005). Inhibition of mutation and combating the evolution of antibiotic resistance. PLoS Biology, 3(6), e176. https://doi.org/10.1371/journal.pbio.0030176

Dadgostar, P. (2019). Antimicrobial Resistance: Implications and Costs. Infection and Drug Resistance, 12, 3903-3910. https://pubmed.ncbi.nlm.nih.gov/31908502

Davey, P., Brown, E., Charani, E., Fenelon, L., Gould, I. M., Holmes, A., ... & Wilcox, M. (2013). Interventions to improve antibiotic prescribing practices for hospital inpatients. Cochrane Database of Systematic Reviews, (4). https://doi.org/10.1002/14651858.CD003543.pub3

Duval, M., Dar, D., Carvalho, F., Rocha, E. P., Sorek, R., & Cossart, P. (2018). HflXr, a homolog of a ribosome-splitting factor, mediates antibiotic resistance. Proceedings of the National Academy of Sciences, 115(52), 13359-13364. https://doi.org/10.1073/pnas.1810555115

Ferri, M., Ranucci, E., Romagnoli, P., & Giaccone, V. (2017). Antimicrobial resistance: A global emerging threat to public health systems. Critical Reviews in Food Science and Nutrition, 57(13), 2857-2876. https://doi.org/10.1080/10408398.2015.1077192

Fleming-Dutra, K. E., Hersh, A. L., Shapiro, D. J., Bartoces, M., Enns, E. A., File, T. M., ... & Hicks, L. A. (2016). Prevalence of inappropriate antibiotic prescriptions among US ambulatory care visits, 2010-2011. Jama, 315(17), 1864-1873. https://doi.org/10.1001/jama.2016.4151

Gerber, J. S., Ross, R. K., Bryan, M., Localio, A. R., Szymczak, J. E., Wasserman, R., ... & Fiks, A. G. (2017). Association of broad-vs narrow-spectrum antibiotics with treatment failure, adverse events, and quality of life in children with acute respiratory tract infections. Jama, 318(23), 2325-2336. https://doi.org/10.1001/jama.2017.18715

Harris, A., Chandramohan, S., Awali, R. A., Grewal, M., Tillotson, G., & Chopra, T. (2019). Physicians’ attitude and knowledge regarding antibiotic use and resistance in ambulatory settings. American Journal of Infection Control, 47(8), 864-868. https://doi.org/10.1016/j.ajic.2019.02.009

Holmes, A. H., Moore, L. S., Sundsfjord, A., Steinbakk, M., Regmi, S., Karkey, A., ... & Piddock, L. J. (2016). Understanding the mechanisms and drivers of antimicrobial resistance. The Lancet, 387(10014), 176-187. https://doi.org/10.1016/S0140-6736(15)00473-0

Innes, G. K., Randad, P. R., Korinek, A., Davis, M. F., Price, L. B., So, A. D., & Heaney, C. D. (2020). External Societal Costs of Antimicrobial Resistance in Humans Attributable to Antimicrobial Use in Livestock. Annual Review of Public Health, 41, 141-157. https://doi.org/10.3386/w26189

Kwon, J. H., & Powderly, W. G. (2021). The post-antibiotic era is here. Science, 373(6554), 471-471. https://doi.org/10.1126/science.abl5997

Larsen, J., Raisen, C. L., Ba, X., Sadgrove, N. J., Padilla-González, G. F., Simmonds, M. S., ... & Larsen, A. R. (2022). Emergence of methicillin resistance predates the clinical use of antibiotics. Nature, 602(7895), 135-141. https://doi.org/10.1038/s41586-021-04265-w

MacGowan, A., & Macnaughton, E. (2013). Antibiotic resistance. Medicine, 41(11), 642-648. https://doi.org/10.1016/j.mpmed.2013.08.002

Maree, C. L., Daum, R. S., Boyle-Vavra, S., Matayoshi, K., & Miller, L. G. (2007). Community-associated methicillin-resistant Staphylococcus aureus isolates and healthcare-associated infections. Emerging Infectious Diseases, 13(2), 236. https://doi.org/10.3201%2Feid1302.060781

Murray, C. J., Ikuta, K. S., Sharara, F., Swetschinski, L., Aguilar, G. R., Gray, A., ... & Naghavi, M. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet, 399(10325), 629-655. https://doi.org/10.1016/S0140-6736(21)02724-0

Reygaert, W. C. (2018). An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiology, 4(3), 482. https://doi.org/10.3934%2Fmicrobiol.2018.3.482

Tang, K. L., Caffrey, N. P., Nóbrega, D. B., Cork, S. C., Ronksley, P. E., Barkema, H. W., ... & Ghali, W. A. (2017). Restricting the use of antibiotics in food-producing animals and its associations with antibiotic resistance in food-producing animals and human beings: a systematic review and meta-analysis. The Lancet Planetary Health, 1(8), e316-e327. https://doi.org/10.1016/S2542-5196(17)30141-9

Visser, B. J., van Vugt, M., & Grobusch, M. P. (2014). Malaria: an update on current chemotherapy. Expert Opinion on Pharmacotherapy, 15(15), 2219-2254. https://doi.org/10.1517/14656566.2014.944499

A Review on Antibiotic Resistance in Microorganisms



How to Cite

Jassim, Y. A. (2022). A Review on Antibiotic Resistance in Microorganisms. Biomedicine and Chemical Sciences, 1(3), 160–163. https://doi.org/10.48112/bcs.v1i3.178