Synthesis and Characterization of Some New Copolyester from Curcumin Mono-Carbonyl Analogues

Authors

  • Muhanad T. Almayyahi Department of Chemistry, College of Science, University of Basrah - Iraq
  • Basil A. Saleh Department of Chemistry, College of Science, University of Basrah - Iraq https://orcid.org/0000-0003-3187-0888
  • Baqer A. Almayyahi Department of Chemistry, College of Science, University of Basrah - Iraq

DOI:

https://doi.org/10.48112/bcs.v1i3.179

Abstract

Abstract Views: 70

Nine copolyesters were prepared from a dicarboxylic acid, curcumin analogues (monocarbonyl) and phenophthalene dye in the mole ratio of 2:1:1 by direct polycondensation using triethylamine (Et3N) as the condensation agent. The dicarboxylic used is 2,6-Pyridine dicarbonyl dichloride acid. The curcumin analogues were prepared by acid catalyzed Aldol condensation reaction. These copolyesters were characterized by FT-IR. The fluorescence of the synthesized copolyesters was also investigated. Furthermore, Thermo gravimetric analysis (TGA) was used to investigate the thermal stability of these copolymers.

Keywords:

Copolyester, Curcumin Analogues, Fluorescence , Polycondensation

References

Ahlinder, A., Fuoco, T., & Finne-Wistrand, A. (2018). Medical grade polylactide, copolyesters and polydioxanone: Rheological properties and melt stability. Polymer Testing, 72, 214-222. https://doi.org/10.1016/j.polymertesting.2018.10.007

Ahlinder, A., Fuoco, T., Morales‐López, Á., Yassin, M. A., Mustafa, K., & Finne‐Wistrand, A. (2020). Nondegradative additive manufacturing of medical grade copolyesters of high molecular weight and with varied elastic response. Journal of Applied Polymer Science, 137(15), 48550. https://doi.org/10.1002/app.48550

Al-Lami, H. S., Al-Mayyahi, B. A., & Haddad, A. M. (2017). Synthesis and Thermal Properties of Poly (Poss Lactide-B-N-Hydroxyethyl Acrylamide) Nanostar-Shape Block Copolymers. J Polym Sci Appl 1, 3, 2.

Al-Mayyahi, B. A., Haddad, A. M., & Al-Lami, H. S. (2017). Characterization and thermal stability of nano eight arm copolymers synthesized by atom transfer radical polymerization. Karbala International Journal of Modern Science, 3(2), 83-92. https://doi.org/10.1016/j.kijoms.2017.03.003

Budriene, S. (2002). Polymer Synthesis: Theory and Practice. Synthesis, 2002(05), 694-694.

Coats, A. W., & Redfern, J. P. (1963). Thermogravimetric analysis. A review. Analyst, 88(1053), 906-924. https://doi.org/10.1039/AN9638800906

Crompton, T. R. (2013). Thermal methods of polymer analysis. Smithers Rapra.

Deopura, B. L., Alagirusamy, R., Joshi, M., & Gupta, B. (Eds.). (2008). Polyesters and polyamides. Elsevier.

Du, Z. Y., Liu, R. R., Shao, W. Y., Mao, X. P., Ma, L., Gu, L. Q., ... & Chan, A. S. (2006). α-Glucosidase inhibition of natural curcuminoids and curcumin analogs. European Journal of Medicinal Chemistry, 41(2), 213-218. https://doi.org/10.1016/j.ejmech.2005.10.012

Goodlaxson, B., Curtzwiler, G., & Vorst, K. (2018). Evaluation of methods for determining heavy metal content in polyethylene terephthalate food packaging. Journal of Plastic Film & Sheeting, 34(2), 119-139. https://doi.org/10.1177%2F8756087917707336

Hongsriphan, N., & Sanga, S. (2018). Antibacterial food packaging sheets prepared by coating chitosan on corona-treated extruded poly (lactic acid)/poly (butylene succinate) blends. Journal of Plastic Film & Sheeting, 34(2), 160-178. https://doi.org/10.1177%2F8756087917722585

Lecomte, P., & Jérôme, C. (2011). Recent developments in ring-opening polymerization of lactones. Synthetic biodegradable polymers, 173-217. https://doi.org/10.1007/12_2011_144

Menczel, J. D., & Prime, R. B. (Eds.). (2009). Thermal analysis of polymers: fundamentals and applications. John Wiley & Sons.

Mittal, V. (Ed.). (2011). High performance polymers and engineering plastics. John Wiley & Sons.

Morgan, P. W. (1964). Linear condensation polymers from phenolphthalein and related compounds. Journal of Polymer Science Part A: General Papers, 2(1), 437-459. https://doi.org/10.1002/pol.1964.100020133

Oral, M. A., Ersoy, O. G., & Serhatli, E. İ. (2018). Effect of acrylonitrile–butadiene–styrene/polyethylene terephthalate blends on dimensional stability, morphological, physical and mechanical properties and after aging at elevated temperature. Journal of Plastic Film & Sheeting, 34(4), 394-417. https://doi.org/10.1177%2F8756087918768348

Rachchh, N. V., & Trivedi, D. N. (2018). Mechanical characterization and vibration analysis of hybrid E-glass/bagasse fiber polyester composites. Materials Today: Proceedings, 5(2), 7692-7700. https://doi.org/10.1016/j.matpr.2017.11.445

Schick, C. (2009). Differential scanning calorimetry (DSC) of semicrystalline polymers. Analytical and Bioanalytical Chemistry, 395(6), 1589-1611. https://doi.org/10.1007/s00216-009-3169-y

Silverstein, R. M. (1974). Infrared spectrometry. Spectrometric identification of organic compounds. Fifth Edition, D. Sawicki and J. Stiefel, Eds. John Wiley & Sons, Inc., 1991, pp. 91–164.

Valerio, O., Misra, M., & Mohanty, A. K. (2018). Poly (glycerol-co-diacids) polyesters: from glycerol biorefinery to sustainable engineering applications, a review. ACS Sustainable Chemistry & Engineering, 6(5), 5681-5693. https://doi.org/10.1021/acssuschemeng.7b04837

Yousif, B. F., Orupabo, C., & Azwa, Z. N. (2012). Characteristics of kenaf fiber immersed in different solutions. Journal of Natural Fibers, 9(4), 207-218. https://doi.org/10.1080/15440478.2012.733149

Synthesis and Characterization of Some New Copolyester from Curcumin Mono-Carbonyl Analogues

Published

2022-07-01

How to Cite

Almayyahi, M. T., Saleh, B. A., & Almayyahi, B. A. (2022). Synthesis and Characterization of Some New Copolyester from Curcumin Mono-Carbonyl Analogues. Biomedicine and Chemical Sciences, 1(3), 147–159. https://doi.org/10.48112/bcs.v1i3.179

Issue

Section

Articles