Barbituric Acids

A Review of Preparation, Reactions and Biological Applications

Authors

  • Mahmood M. Fahad Medical Laboratory Techniques Department, Kufa Techincal Institute, Al-Furat Al- Awsat Technical University - Iraq https://orcid.org/0000-0003-2405-7047

DOI:

https://doi.org/10.48112/bcs.v1i4.294

Abstract

Abstract Views: 249

Barbiturates, which are derived from the medically significant substance barbituric acid also known as malonylurea or 4-hydroxyuracil, are employed as anaesthetics, sedative-hypnotics, anticonvulsants, and depressants of the central nervous system. In recent years, researchers have paid great attention to compounds and derivatives of barbituric acid, although the first barbituric acid was discovered in 1864 by Adolf Von Baeyer. Due to its great medical and biological importance and wide applications in polymerization catalysts, plastics and textiles, aqueous or oil inks, and polymers. The background, reactions, and methods of preparing barbituric acid have been studied over the last ten years.

Keywords:

Barbituric acid, Preparation, Reactions, Complexes, Biological uses

Metrics

Metrics Loading ...

References

Barakat, A., Al-Majid, A. M., Soliman, S. M., Islam, M. S., Ghawas, H. M., Yousuf, S., ... & Wadood, A. (2017). Monoalkylated barbiturate derivatives: X-ray crystal structure, theoretical studies, and biological activities. Journal of Molecular Structure, 1141, 624-633. https://doi.org/10.1016/j.molstruc.2017.04.017

Barakat, A., Al-Najjar, H. J., Al-Majid, A. M., Soliman, S. M., Mabkhot, Y. N., Shaik, M. R., ... & Fun, H. K. (2015). Synthesis, NMR, FT-IR, X-ray structural characterization, DFT analysis and isomerism aspects of 5-(2, 6-dichlorobenzylidene) pyrimidine-2, 4, 6 (1H, 3H, 5H)-trione. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 147, 107-116. https://doi.org/10.1016/j.saa.2015.03.016

Barakat, A., Soliman, S. M., Ali, M., Elmarghany, A., Al-Majid, A. M., Yousuf, S., ... & El-Faham, A. (2020). Synthesis, crystal structure, evaluation of urease inhibition potential and the docking studies of cobalt (III) complex based on barbituric acid Schiff base ligand. Inorganica Chimica Acta, 503, 119405. https://doi.org/10.1016/j.ica.2019.119405

Bassani, D. M. (2006). From Supramolecular Photochemistry to Self-Assembled Photoactive Architectures: The Emergence of Photochemical Nanosciences. CHIMIA, 60(4), 175-175. https://doi.org/10.2533/000942906777674796

Bojarski, J. T., Mokrosz, J. L., Bartoń, H. J., & Paluchowska, M. H. (1985). Recent progress in barbituric acid chemistry. Advances in Heterocyclic Chemistry, 38, 229-297. https://doi.org/10.1016/S0065-2725(08)60921-6

Cordato D. J., Herkes G.K., Mather L.E., (2003). Stereochemistry in clinical medicine: a neurological perspective, Journal of clinical of Neuroscience, 10, 649-654. https://doi.org/10.1016/j.jocn.2002.10.001

da Silva, E. T., & Lima, E. L. (2003). Reaction of 1, 3-dimethyl-5-acetyl-barbituric acid (DAB) with primary amines. Access to intermediates for selectively protected spermidines. Tetrahedron letters, 44(18), 3621-3624. https://doi.org/10.1016/S0040-4039(03)00709-3

Fahad, M. M., Shafiq, N., Arshad, U., & Radh, A. J. (2021). As Antimicrobial Agents: Synthesis, Structural Characterization and Molecular Docking study of Barbituric Acid Derivatives from Phenobarbital, 01 November 2021, PREPRINT (Version 1) available at Research Square. https://doi.org/10.21203/rs.3.rs-1019035/v1

Fahad, M. M., Zimam, E. H., & Mohamad, M. J. (2019a). A Series of barbituric acid derivatives from sulfa drug: synthesis and antimicrobial activity. Nano Biomed. Eng, 11(1), 67-83. https://doi.org/10.5101/nbe.v11i1.p67-83

Fahad, M. M., Zimam, E. H., & Mohamad, M. J. (2019b). Synthesis and Antimicrobial Activity of Some New Barbituric Acid Derivatives Containing Thiazole Moiety from Sulfadiazine. Nano Biomed. Eng, 11(2), 124-137. https://doi.org/10.5101/nbe.v11i2.p124-137

Fahad, M. M., Zimam, E. H., Radhi, A. J., Mohamud, M. J., & Abbas, N. A. (2022, January). Based on sulfa drug: Synthesis and biological study of barbituric acid derivatives containing 1, 2, 3-Triazoline moiety. In AIP Conference Proceedings (Vol. 2386, No. 1, p. 030021). AIP Publishing LLC. https://doi.org/10.1063/5.0066844

Garcia, H. C., Campos, M. T., Edwards, H. G., & de Oliveira, L. F. C. (2016). Vibrational and structural properties of barbiturate anions in supramolecular compounds. Vibrational Spectroscopy, 86, 134-142. https://doi.org/10.1016/j.vibspec.2016.07.002

Goodman, L. S., & Gilman, A. (1955). The pharmacological basis of therapeutics. The Macmillan.

Ikeda, A., Tanaka, Y., Nobusawa, K., & Kikuchi, J. I. (2007). Solubilization of single-walled carbon nanotubes by supramolecular complexes of barbituric acid and triaminopyrimidines. Langmuir, 23(22), 10913-10915. https://doi.org/10.1021/la702747r

Karcı, F., & Karcı, F. (2008). The synthesis and solvatochromic properties of some novel heterocyclic disazo dyes derived from barbituric acid. Dyes and Pigments, 77(2), 451-456. https://doi.org/10.1016/j.dyepig.2007.07.009

Levina, R. Y., & Velichko, F. K. (1960). Advances in the chemistry of barbituric acids. Russian Chemical Reviews, 29(8), 437. https://doi.org/10.1070/RC1960v029n08ABEH001245

Mahmudov, K. T., Kopylovich, M. N., Maharramov, A. M., Kurbanova, M. M., Gurbanov, A. V., & Pombeiro, A. J. (2014). Barbituric acids as a useful tool for the construction of coordination and supramolecular compounds. Coordination Chemistry Reviews, 265, 1-37. https://doi.org/10.1016/j.ccr.2014.01.002

Morgan, L. R., Jursic, B. S., Hooper, C. L., Neumann, D. M., Thangaraj, K., & LeBlanc, B. (2002). Anticancer activity for 4, 4′-dihydroxybenzophenone-2, 4-dinitrophenylhydrazone (A-007) analogues and their abilities to interact with lymphoendothelial cell surface markers. Bioorganic & Medicinal Chemistry Letters, 12(23), 3407-3411. https://doi.org/10.1016/S0960-894X(02)00725-4

Muthiah, P. T., Hemamalini, M., Bocelli, G., & Cantoni, A. (2007). Hydrogen-bonded supramolecular motifs in crystal structures of trimethoprim barbiturate monohydrate (I) and 2-amino-4, 6-dimethylpyrimidinium barbiturate trihydrate (II). Structural Chemistry, 18(2), 171-180. https://doi.org/10.1007/s11224-006-9083-4

Pareek, D., Chaudhary, M., Pareek, P. K., Kant, R., Ojha, K. G., Iraqi, S. M. U., & Pareek, A. (2010). Synthesis of some biologically important 2-thiobarbituric acid derivatives incorporating benzothiazole moiety. Der. Pharmacia Lett, 2(4), 274-283.

Patrick, G. L. (2013). An introduction to medicinal chemistry. Oxford university press.

Roth, M., Bargon, J., Spiess, H. W., & Koch, A. (2008). Parahydrogen induced polarization of barbituric acid derivatives: 1H hyperpolarization studies. Magnetic Resonance in Chemistry, 46(8), 713-717. https://doi.org/10.1002/mrc.2234

Salman, H., & Zmam, E. (2012). Synthesis and characterization some novel barbituric acid derivatives from sulfadiazine. Journal of Kufa for Chemical Science, 6, 121-129.

Sheikhhosseini, E., Farrokhi, E., & Bigdeli, M. A. (2016). Synthesis of novel tetrahydroquinoline derivatives from α, α′-bis (substituted-benzylidene) cycloalkanones. Journal of Saudi Chemical Society, 20, S227-S230. https://doi.org/10.1016/j.jscs.2012.09.018

Shiradkar, M. R., Ghodake, M., Bothara, K. G., Bhandari, S. V., Nikalje, A., Akula, K. C., ... & Burange, P. J. (2007). Synthesis and anticonvulsant activity of clubbed thiazolidinone–barbituric acid and thiazolidinone–triazole derivatives. Arkivoc, 14, 58-74.

Shoeb, M. (2006). Anti-cancer agents from medicinal plants. Bangladesh Journal of Pharmacology, 1(2), 35-41. https://doi.org/10.3329/bjp.v1i2.486

Singh, P., Kaur, M., & Verma, P. (2009). Design, synthesis and anticancer activities of hybrids of indole and barbituric acids—Identification of highly promising leads. Bioorganic & medicinal chemistry letters, 19(11), 3054-3058. https://doi.org/10.1016/j.bmcl.2009.04.014

Singh, P., Kaur, M., & Verma, P. (2009). Design, synthesis and anticancer activities of hybrids of indole and barbituric acids—Identification of highly promising leads. Bioorganic & medicinal chemistry letters, 19(11), 3054-3058. https://doi.org/10.1016/j.bmcl.2009.04.014

Uhlmann, C., & Fröscher, W. (2009). Low risk of development of substance dependence for barbiturates and clobazam prescribed as antiepileptic drugs: results from a questionnaire study. CNS neuroscience & therapeutics, 15(1), 24-31. https://doi.org/10.1111/j.1755-5949.2008.00073.x

Westhorpe, R. N., & Ball, C. (2002, December). The intravenous barbiturates. In International Congress Series (Vol. 1242, pp. 57-69). Elsevier. https://doi.org/10.1016/S0531-5131(02)00758-6

Yilmaz, V. T., Aksoy, M. S., & Sahin, O. (2009). Different coordination modes of 5, 5-diethylbarbiturate in the copper (II) complexes with some aliphatic amines: Synthesis, spectroscopic, thermal and structural studies. Inorganica Chimica Acta, 362(10), 3703-3708. https://doi.org/10.1016/j.ica.2009.04.026

Zaier, A. J. (2009). Synthesis of Barbiturate Derivatives from Imines. Journal of Research Diyala humanity, (39).

Zamanloo, M. R., nasser Shamkhali, A., Alizadeh, M., Mansoori, Y., & Imanzadeh, G. (2012). A novel barbituric acid-based azo dye and its derived polyamides: Synthesis, spectroscopic investigation and computational calculations. Dyes and pigments, 95(3), 587-599. https://doi.org/10.1016/j.dyepig.2012.05.028

Zee-Cheng, R. K., & Cheng, C. C. (1978). Antineoplastic agents. Structure-activity relationship study of bis (substituted aminoalkylamino) anthraquinones. Journal of Medicinal Chemistry, 21(3), 291-294. https://doi.org/10.1021/jm00201a012

Zheng, H., Li, S., Ma, L., Cheng, L., Deng, C., Chen, Z., ... & Chen, L. (2011). A novel agonist of PPAR-γ based on barbituric acid alleviates the development of non-alcoholic fatty liver disease by regulating adipocytokine expression and preventing insulin resistance. European journal of pharmacology, 659(2-3), 244-251. https://doi.org/10.1016/j.ejphar.2011.03.033

Barbituric Acids: A Review of Preparation, Reactions and Biological Applications

Published

2022-10-01

How to Cite

Fahad, M. M. (2022). Barbituric Acids: A Review of Preparation, Reactions and Biological Applications . Biomedicine and Chemical Sciences, 1(4), 295–305. https://doi.org/10.48112/bcs.v1i4.294

Issue

Section

Articles

Most read articles by the same author(s)