Identification of Pathogenic Fungi in Renal Transplant Patients by Conventional and Molecular Methods

Authors

  • Faheema Jabbar Tropical Biological Research Unit, College of Science, University of Baghdad - Iraq https://orcid.org/0000-0002-6710-0992
  • Azhar A.Al-Attraqchi Department of Medical Microbiology, College of Medicine, Al-Nahrain University, Baghdad - Iraq
  • Dina Nabeel Alkhayyat Kidney Disease and Transplantation Center / Baghdad Medical City, Baghdad - Iraq

DOI:

https://doi.org/10.48112/bcs.v1i3.198

Abstract

Abstract Views: 84

Opportunistic fungal infections due to the immune- compromised status of renal transplant patients are related to high rates of morbidity and mortality regardless of their minor incidence. Delayed in identification of invasive fungal infections (IFIs), will lead to delayed treatment and results in high mortality in those populations. The study aimed to assess the frequency of invasive fungal infection in kidney transplant recipients by conventional and molecular methods. This study included 100 kidney transplant recipients (KTR) (75 males, and 25 females), collected from the Centre of Kidney Diseases and Transplantation in the Medical City of Baghdad. Blood samples were collected during the period from June 2018 to April 2019. Twenty one out of 100 renal-transplanted patients were infected with pathogenic fungi, four of the patients were females and 17 were males. There is an observation of a high incidence of fungemia in patients with the abnormal value of blood urea according to PCR and culture results. Referring to fungal isolates the most prevalent was Saccharomyces cerevisiae, which account for 19 isolates out of 21 the other two isolates were Zygosaccharomyces rouxii and Aspergillus flavus. The results of the current study show significant correlation between PCR and culture methods at (P<0.0009).

Keywords:

Conventional Methods, Fungal Infection, ITS2, PCR, Renal Transplant

Metrics

Metrics Loading ...

References

Angebault, C., Payen, M., Woerther, P. L., Rodriguez, C., & Botterel, F. (2020). Combined bacterial and fungal targeted amplicon sequencing of respiratory samples: Does the DNA extraction method matter? PLoS ONE, 15(4), 1–17. https://doi.org/10.1371/journal.pone.0232215

Azab, M. M., Taleb, A. F. A., Mohamed, N. A. E., & Omran, F. H. (2015). Rapid Diagnosis of Invasive Fungal Infections. International Journal of Current Microbiology and Applied Sciences,4,(11),470-486.

Badiee, P., & Alborzi, A. (2011). Invasive fungal infections in renal transplant recipients. Experimental and Clinical Transplantation: Official Journal of the Middle East Society for Organ Transplantation, 9(6), 355-362. https://europepmc.org/article/med/22142041

Badiee, P., & Hashemizadeh, Z. (2014). Opportunistic invasive fungal infections: Diagnosis & clinical management. Indian Journal of Medical Research, 139(2), 195–204. https://pubmed.ncbi.nlm.nih.gov/24718393

Badotti, F., De Oliveira, F. S., Garcia, C. F., Vaz, A. B. M., Fonseca, P. L. C., Nahum, L. A., Oliveira, G., & Góes-Neto, A. (2017). Effectiveness of ITS and sub-regions as DNA barcode markers for the identification of Basidiomycota (Fungi). BMC Microbiology, 17(1). https://doi.org/10.1186/s12866-017-0958-x

Baškova, L., Landlinger, C., Preuner, S., & Lion, T. (2007). The Pan-AC assay: a single-reaction real-time PCR test for quantitative detection of a broad range of Aspergillus and Candida species. Journal of medical microbiology, 56(9), 1167-1173. https://doi.org/10.1099/jmm.0.47212-0

Bengtsson-Palme, J., Ryberg, M., Hartmann, M., Branco, S., Wang, Z., Godhe, A., De Wit, P., Sánchez-García, M., Ebersberger, I., de Sousa, F., Amend, A., Jumpponen, A., Unterseher, M., Kristiansson, E., Abarenkov, K., Bertrand, Y. J. K., Sanli, K., Eriksson, K. M., Vik, U., … Nilsson, R. H. (2013). Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods in Ecology and Evolution, 4(10), 914–919. https://doi.org/10.1111/2041-210X.12073

Breathnach, A., & Evans, J. (1995). Growth and detection of filamentous fungi in the BacT/Alert blood culture system. Journal of Clinical Pathology, 48(7), 670-672. http://dx.doi.org/10.1136/jcp.48.7.670

Brown, G. D., Denning, D. W., Gow, N. A., Levitz, S. M., Netea, M. G., & White, T. C. (2012). Hidden killers: human fungal infections. Science Translational Medicine, 4(165), 165rv13-165rv13. https://doi.org/10.1126/scitranslmed.3004404

Einollahi, B., Lessan-Pezeshki, M., Pourfarziani, V., Nemati, E., Nafar, M., Pour-Reza-Gholi, F., ... & Aslani, J. (2008). IInvasive fungal infections following renal transplantation: A review of 2410 recipients. Annals of Transplantation, 13(4), 55-58.

Ezzatzadegan, S., Chen, S., & Chapman, J. R. (2012). Invasive fungal infections after renal transplantation. International Journal of Organ Transplantation Medicine, 3(1), 18–25. https://pubmed.ncbi.nlm.nih.gov/25013619

Garner, C. D., Starr, J. K., McDonough, P. L., & Altier, C. (2010). Molecular identification of veterinary yeast isolates by use of sequence-based analysis of the D1/D2 region of the large ribosomal subunit. Journal of Clinical Microbiology, 48(6), 2140-2146. https://doi.org/10.1128/JCM.02306-09

Gorton, R. L., Jones, G. L., Kibbler, C. C., & Collier, S. (2013). Candida nivariensis isolated from a renal transplant patient with persistent candiduria—molecular identification using ITS PCR and MALDI-TOF. Medical Mycology Case Reports, 2, 156-158. https://doi.org/10.1016/j.mmcr.2013.10.001

Gosiewski, T., Jurkiewicz-Badacz, D., Sroka, A., Brzychczy-Włoch, M., & Bulanda, M. (2014). A novel, nested, multiplex, real-time PCR for detection of bacteria and fungi in blood. BMC Microbiology, 14(1), 1–7. https://doi.org/10.1186/1471-2180-14-144

Heeger, F., Wurzbacher, C., Bourne, E. C., Mazzoni, C. J., & Monaghan, M. T. (2019). Combining the 5.8S and ITS2 gene regions to improve classification of fungi. BioRxiv, 1–20. https://doi.org/10.1101/532358

Khoury, J. A., & Brennan, D. C. (2005). Infectious complications in kidney transplant recipients: review of the literature. Saudi Journal of Kidney Diseases and Transplantation, 16(4), 453. http://www.ncbi.nlm.nih.gov/pubmed/18202503

Kirn, T. J., & Weinstein, M. P. (2013). Update on blood cultures: how to obtain, process, report, and interpret. Clinical Microbiology and Infection, 19(6), 513-520. https://doi.org/10.1111/1469-0691.12180

Kõljalg, U., Nilsson, R. H., Abarenkov, K., Tedersoo, L., Taylor, A. F. S., Bahram, M., Bates, S. T., Bruns, T. D., Bengtsson-Palme, J., Callaghan, T. M., Douglas, B., Drenkhan, T., Eberhardt, U., Dueñas, M., Grebenc, T., Griffith, G. W., Hartmann, M., Kirk, P. M., Kohout, P., … Larsson, K. H. (2013). Towards a unified paradigm for sequence-based identification of fungi. Molecular Ecology, 22(21), 5271–5277. https://doi.org/10.1111/mec.12481

Landlinger, C., Preuner, S., Bašková, L., Van Grotel, M., Hartwig, N. G., Dworzak, M., Mann, G., Attarbaschi, A., Kager, L., Peters, C., Matthes-Martin, S., Lawitschka, A., Van Den Heuvel-Eibrink, M. M., & Lion, T. (2010). Diagnosis of invasive fungal infections by a real-time panfungal PCR assay in immunocompromised pediatric patients. Leukemia, 24(12), 2032–2038. https://doi.org/10.1038/leu.2010.209

Mbareche, H., Veillette, M., Bilodeau, G., & Duchaine, C. (2020). Comparison of the performance of ITS1 and ITS2 as barcodes in amplicon-based sequencing of bioaerosols. PeerJ 8:e8523. https://doi.org/10.7717/peerj.8523

Mello, A., Napoli, C., Murat, C., Morin, E., Marceddu, G., & Bonfante, P. (2011). ITS-1 versus ITS-2 pyrosequencing: A comparison of fungal populations in truffle grounds. Mycologia, 103(6), 1184–1193. https://doi.org/10.3852/11-027

Mohanty, N. K., & Sahu, S. (2014). Fusarium solani infection in a kidney transplant recipient. Indian Journal of Nephrology, 24(5), 312-314. https://doi.org/10.4103%2F0971-4065.133014

Pontes, A., Hutzler, M., Brito, P. H., & Sampaio, J. P. (2020). Revisiting the taxonomic synonyms and populations of Saccharomyces cerevisiae—phylogeny, phenotypes, ecology and domestication. Microorganisms, 8(6), 903. https://doi.org/10.3390/microorganisms8060903

Sanchez, A., & Larsen, R. (2007). Fungal infections in solid organ transplantation. Current Opinion in Organ Transplantation, 12(6), 579-584. https://doi.org/10.1097/MOT.0b013e3282f1fc12

Tobon, A. M., Arango, M., Fernández, D., & Restrepo, A. (2003). Mucormycosis (zygomycosis) in a heart-kidney transplant recipient: Recovery after posaconazole therapy. Clinical Infectious Diseases, 36(11), 1488–1491. https://doi.org/10.1086/375075

Tolkoff-Rubin, N. E., & Rubin, R. H. (1992). Opportunistic fungal and bacterial infection in the renal transplant recipient. Journal of the American Society of Nephrology, 2(12 SUPPL.). https://doi.org/10.1681/asn.v212s264

Vaidyanathan, K. (2016). Textbook of Biochemistry for Medical Students. Textbook of Biochemistry for Medical Students, August 2018. https://doi.org/10.5005/jp/books/13014

Vilgalys, R., & Hester, M. (1990). Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of bacteriology, 172(8), 4238-4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990

Yao, H., Song, J., Liu, C., Luo, K., Han, J., Li, Y., Pang, X., Xu, H., Zhu, Y., Xiao, P., & Chen, S. (2010). Use of ITS2 region as the universal DNA barcode for plants and animals. PLoS ONE, 5(10). https://doi.org/10.1371/journal.pone.0013102

Zaher EHF, M. A. (2015). Why nuclear ribosomal internal transcribed spacer (ITS) has been Selected as the DNA Barcode for Fungi? Advancements in Genetic Engineering, 04(02). https://doi.org/10.4172/2169-0111.1000119

Identification of Pathogenic Fungi in Renal Transplant Patients by Conventional and Molecular Methods

Published

2022-07-01

How to Cite

Jabbar, F., A.Al-Attraqchi, A., & Alkhayyat, D. N. (2022). Identification of Pathogenic Fungi in Renal Transplant Patients by Conventional and Molecular Methods. Biomedicine and Chemical Sciences, 1(3), 126–131. https://doi.org/10.48112/bcs.v1i3.198

Issue

Section

Articles