Electrochemical Studies on Corrosion Inhibition Performance of 1-((2,4-Diemthylphenyl) Diazenyl) Naphthalen-2-Ol on Mild Steel in Acidic Medium

Authors

  • Mohammed Abdulhussin Enad General Directorate of Education Thi-Qa, Department of Specialized Supervision, Thi-Qar – Iraq https://orcid.org/0009-0006-0663-1972
  • Sabah Abbas Malik Branch of Pharmaceutical Chemistry, Branch of Pharmaceutical Chemistry, Faculty of Pharmacy, Kufa University, An-Najaf – Iraq

DOI:

https://doi.org/10.48112/jestt.v1i2.509

Abstract

Abstract Views: 56

In order to assess the impact of 1-((2, 4-dimethylphenyl) diazenyl) naphthalen-2-ol (DPN) on carbon steel deterioration in a 1M HCl environment, potentiodynamic polarization methods were employed. The findings of the electrochemical assessment highlighted a correlation between DPN concentration and inhibition efficiency. Further analysis using potentiodynamic polarisation methods identified DPN as a mixed-type determent. The adhesion of DPN on the metallic exterior was evaluated using Langmuir Adhesion Isotherm, and thermodynamic parameters just like ΔG°ads, ΔH°ads, and ΔS°ads were studied. The impact of temperature on deterioration rate was also evaluated, with testing conducted at 298, 308, and 318 absolute temperature. Lastly, the synthesis and characterisation of the DPN compound was completed. Spectroscopic ways like FT-IR, 13C NMR, and 1H NMR were utilised.

Keywords:

Adhesion isotherm , Deterioration, Inhibition efficiency

References

Duda, Y., Govea-Rueda, R., Galicia, M., Beltran, H. I., & Zamudio-Rivera, L. S. (2005). Corrosion inhibitors: design, performance, and computer simulations. The Journal of Physical Chemistry B, 109(47), 22674-22684. https://doi.org/10.1021/jp0522765

Samontha, A., & Jitsamak, N. (2019). Effect of temperature on inhibition efficiency of eugenol for copper corrosion. Life Sciences and Environment Journal , 20 (1), 165-171.

Avci, G. (2008). Inhibitor effect of N, N′-methylenediacrylamide on corrosion behavior of mild steel in 0.5 M HCl. Materials Chemistry and Physics, 112(1), 234-238. https://doi.org/10.1016/j.matchemphys.2008.05.036

Bedir, A. G., Abd El-raouf, M., Abdel-Mawgoud, S., Negm, N. A., & El Basiony, N. M. (2021). Corrosion inhibition of carbon steel in hydrochloric acid solution using ethoxylated nonionic surfactants based on schiff base: electrochemical and computational investigations. ACS omega, 6(6), 4300-4312. https://doi.org/10.1021/acsomega.0c05476

de Souza, F. S., & Spinelli, A. (2009). Caffeic acid as a green corrosion inhibitor for mild steel. Corrosion science, 51(3), 642-649. https://doi.org/10.1016/j.corsci.2008.12.013

Yurt, A., & Aykın, Ö. (2011). Diphenolic Schiff bases as corrosion inhibitors for aluminium in 0.1 M HCl: potentiodynamic polarisation and EQCM investigations. Corrosion Science, 53(11), 3725-3732. https://doi.org/10.1016/j.corsci.2011.07.018

Patel, A. S., Panchal, V. A., Mudaliar, G. V., & Shah, N. K. (2013). Impedance spectroscopic study of corrosion inhibition of Al-Pure by organic Schiff base in hydrochloric acid. Journal of Saudi Chemical Society, 17(1), 53-59. https://doi.org/10.1016/j.jscs.2011.06.003

Abiola, O. K., Oforka, N. C., Ebenso, E. E., & Nwinuka, N. M. (2007). Eco‐friendly corrosion inhibitors: the inhibitive action of Delonix Regia extract for the corrosion of aluminium in acidic media. Anti-Corrosion Methods and Materials, 54(4), 219-224. https://doi.org/10.1108/00035590710762357

Radojčić, I., Berković, K., Kovač, S., & Vorkapić-Furač, J. J. C. S. (2008). Natural honey and black radish juice as tin corrosion inhibitors. Corrosion Science, 50(5), 1498-1504. https://doi.org/10.1016/j.corsci.2008.01.013

Newaz, K. M. S., Basirun, W. J., Ali, H. B. M., Faraj, F. L., & Khan, G. M. (2015). Application of Natural Product Extracts as Green Corrosion Inhibitors for Metals and Alloys in Acid Pickling Processes-A review. International Journal of Electrochemical Science, 10(8), 6120-6134. https://doi.org/10.1016/S1452-3981(23)06707-X

Erdoğan, Ş., Safi, Z. S., Kaya, S., Işın, D. Ö., Guo, L., & Kaya, C. (2017). A computational study on corrosion inhibition performances of novel quinoline derivatives against the corrosion of iron. Journal of Molecular Structure, 1134, 751-761. https://doi.org/10.1016/j.molstruc.2017.01.037

Bouchouit, M., Elkouari, Y., Messaadia, L., Bouraiou, A., Arroudj, S., Bouacida, S., ... & Bouchouit, K. (2016). Synthesis, spectral, theoretical calculations and optical properties performance of substituted-azobenzene dyes. Optical and Quantum Electronics, 48, 1-11. https://doi.org/10.1007/s11082-016-0455-8

Benabid, S., Douadi, T., Issaadi, S., Penverne, C., & Chafaa, S. (2017). Electrochemical and DFT studies of a new synthesized Schiff base as corrosion inhibitor in 1 M HCl. Measurement, 99, 53-63. https://doi.org/10.1016/j.measurement.2016.12.022

Tsuru, T., Haruyama, S., & Gijutsu, B. (1978). Corrosion inhibition of iron by amphoteric surfactants in 2M HCl. J Jpn Soc Corros Eng, 27, 573-581.

Hegazy, M. A. (2009). A novel Schiff base-based cationic gemini surfactants: synthesis and effect on corrosion inhibition of carbon steel in hydrochloric acid solution. Corrosion Science, 51(11), 2610-2618. https://doi.org/10.1016/j.corsci.2009.06.046

Singh, D. K., Ebenso, E. E., Singh, M. K., Behera, D., Udayabhanu, G., & John, R. P. (2018). Non-toxic Schiff bases as efficient corrosion inhibitors for mild steel in 1 M HCl: Electrochemical, AFM, FE-SEM and theoretical studies. Journal of Molecular Liquids, 250, 88-99. https://doi.org/10.1016/j.molliq.2017.11.132

Guruprasad, A. M., Sachin, H. P., & Swetha, G. A. (2018). Corrosion Inhibition of Mild Steel by Capacitabine in Hydrochloric Acid Medium. Asian Journal of Chemistry, 30(7), 1629-1633.

Tezcan, F., Yerlikaya, G., Mahmood, A., & Kardaş, G. (2018). A novel thiophene Schiff base as an efficient corrosion inhibitor for mild steel in 1.0 M HCl: electrochemical and quantum chemical studies. Journal of Molecular Liquids, 269, 398-406. https://doi.org/10.1016/j.molliq.2018.08.025

Issaadi, S., Douadi, T., Zouaoui, A., Chafaa, S., Khan, M. A., & Bouet, G. (2011). Novel thiophene symmetrical Schiff base compounds as corrosion inhibitor for mild steel in acidic media. Corrosion Science, 53(4), 1484-1488. https://doi.org/10.1016/j.corsci.2011.01.022

Sedik, A., Lerari, D., Salci, A., Athmani, S., Bachari, K., Gecibesler, İ. H., & Solmaz, R. (2020). Dardagan Fruit extract as eco-friendly corrosion inhibitor for mild steel in 1 M HCl: Electrochemical and surface morphological studies. Journal of the Taiwan Institute of Chemical Engineers, 107, 189-200. https://doi.org/10.1016/j.jtice.2019.12.006

Qu, Q., Li, L., Bai, W., Jiang, S., & Ding, Z. (2009). Sodium tungstate as a corrosion inhibitor of cold rolled steel in peracetic acid solution. Corrosion science, 51(10), 2423-2428. https://doi.org/10.1016/j.corsci.2009.06.029

Herrag, L., Hammouti, B., Elkadiri, S., Aouniti, A., Jama, C., Vezin, H., & Bentiss, F. (2010). Adsorption properties and inhibition of mild steel corrosion in hydrochloric solution by some newly synthesized diamine derivatives: experimental and theoretical investigations. Corrosion Science, 52(9), 3042-3051. https://doi.org/10.1016/j.corsci.2010.05.024

Singh, P., Ebenso, E. E., Olasunkanmi, L. O., Obot, I. B., & Quraishi, M. A. (2016). Electrochemical, theoretical, and surface morphological studies of corrosion inhibition effect of green naphthyridine derivatives on mild steel in hydrochloric acid. The Journal of Physical Chemistry C, 120(6), 3408-3419. https://doi.org/10.1021/acs.jpcc.5b11901

Yadav, M., Sinha, R. R., Kumar, S., Bahadur, I., & Ebenso, E. E. (2015). Synthesis and application of new acetohydrazide derivatives as a corrosion inhibition of mild steel in acidic medium: Insight from electrochemical and theoretical studies. journal of molecular liquids, 208, 322-332. https://doi.org/10.1016/j.molliq.2015.05.005

Gurudatt, D. M., & Mohana, K. N. (2014). Synthesis of new pyridine based 1, 3, 4-oxadiazole derivatives and their corrosion inhibition performance on mild steel in 0.5 M hydrochloric acid. Industrial & Engineering Chemistry Research, 53(6), 2092-2105. https://doi.org/10.1021/ie402042d

Tallman, D. E., Spinks, G., Dominis, A., & Wallace, G. G. (2002). Electroactive conducting polymers for corrosion control: Part 1. General introduction and a review of non-ferrous metals. Journal of Solid State Electrochemistry, 6, 73-84. https://doi.org/10.1007/s100080100212

Idouhli, R., Oukhrib, A., Khadiri, M., Zakir, O., Aityoub, A., Abouelfida, A., ... & Benyaich, A. (2021). Understanding the corrosion inhibition effectiveness using Senecio anteuphorbium L. fraction for steel in acidic media. Journal of Molecular Structure, 1228, 129478. https://doi.org/10.1016/j.molstruc.2020.129478

Electrochemical Studies on Corrosion Inhibition Performance of 1-((2,4-Diemthylphenyl) Diazenyl) Naphthalen-2-Ol on Mild Steel in Acidic Medium

Published

2023-08-27

How to Cite

Enad, M. A., & Malik, S. A. (2023). Electrochemical Studies on Corrosion Inhibition Performance of 1-((2,4-Diemthylphenyl) Diazenyl) Naphthalen-2-Ol on Mild Steel in Acidic Medium. Journal of Engineering, Science and Technological Trends, 1(2), 67–76. https://doi.org/10.48112/jestt.v1i2.509

Issue

Section

Articles